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Abstract

Graph machine learning (GML) is receiving growing interest within the pharmaceutical and biotechnology industries for its
ability to model biomolecular structures, the functional relationships between them, and integrate multi-omic datasets —
amongst other data types. Herein, we present a multidisciplinary academic-industrial review of the topic within the context
of drug discovery and development. After introducing key terms and modelling approaches, we move chronologically
through the drug development pipeline to identify and summarize work incorporating: target identification, design of small
molecules and biologics, and drug repurposing. Whilst the field is still emerging, key milestones including repurposed drugs
entering in vivo studies, suggest GML will become a modelling framework of choice within biomedical machine learning.
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Introduction

The process from drug discovery to market costs, on average,
well over $1 billion and can span 12 years or more [1–3]; due to
high attrition rates, rarely can one progress to market in less
than ten years [4, 5]. The high levels of attrition throughout
the process not only make investments uncertain but require
market approved drugs to pay for the earlier failures. Despite an
industry-wide focus on efficiency for over a decade, spurred on
by publications and annual reports highlighting revenue cliffs
from ending exclusivity and falling productivity, significant
improvements have proved elusive against the backdrop of
scientific, technological and regulatory change [2]. For the
aforementioned reasons, there is now a greater interest in
applying computational methodologies to expedite various parts
of the drug discovery and development pipeline [6], see Figure 1.

Digital technologies have transformed the drug development
process generating enormous volumes of data. Changes range
from moving to electronic lab notebooks [7], electronic regu-
latory submissions, through increasing volumes of laboratory,
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experimental and clinical trial data collection [8] including the
use of devices [9, 10] to precision medicine and the use of ‘big
data’ [11]. The data collected about therapies extend well beyond
research and development to include hospital, specialist and
primary care medical professionals’ patient records — including
observations taken from social media, e.g. for pharmacovigi-
lance [12, 13]. There are innumerable online databases and other
sources of information including scientific literature, clinical
trials information, through to databases of repurposable drugs
[14, 15]. Technological advances now allow for greater -omic pro-
filing beyond genotyping and whole genome sequencing (WGS);
standardization of microfluidics and antibody tagging has made
single-cell technologies widely available to study both the tran-
scriptome, e.g. using RNA-seq [16], the proteome (targeted), e.g.
via mass cytometry [17], or even multiple modalities together
[18].

One of the key characteristics of biomedical data that is
produced and used in the drug discovery process is its inter-
connected nature. Such data structure can be represented as
a graph, a mathematical abstraction ubiquitously used across
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Figure 1. Timeline of drug development linked to potential areas of application by GML methodologies. Preclinical drug discovery applications are shown on the left

side of the figure (∼5.5 years), and clinical drug development applications are shown on the right hand side of the figure (∼8 years). Over this period, for every ∼25 drug

discovery programmes, a single successful drug reaches market approval. Applications listed in the top of half of the figure are less developed in the context of GML

with limited experimental validation. Financial, timeline and success probability data are taken from Paul et al. [5].

disciplines and fields in biology to model the diverse interactions
between biological entities that intervene at the different scales.
At the molecular scale, proteins and other biomolecules can
be represented as graphs capturing spatial and structural rela-
tionships between their amino acid residues [19, 20] and small
molecule drugs as graphs relating their constituent atoms and
chemical bonding structure [21, 22]. At an intermediary scale,
interactomes are graphs that capture specific types of inter-
actions between biomolecular species (e.g. metabolites, mRNA,
proteins) [23], with protein–protein interaction (PPI) graphs being
perhaps most commonplace. Finally, at a higher level of abstrac-
tion, knowledge graphs can represent the complex relationships
between drugs, side effects, diagnosis, associated treatments
and test results [24, 25] as found in electronic medical records
(EMR).

Within the last decade, two emerging trends have reshaped
the data modelling community: network analysis and deep
learning. The ‘network medicine’ paradigm has long been
recognized in the biomedical field [26], with multiple approaches
borrowed from graph theory and complex network science
applied to biological graphs such as PPIs and gene regulatory
networks (GRNs). Most approaches in this field were limited
to handcrafted graph features such as centrality measures and
clustering. In contrast, deep neural networks, a particular type
of machine learning algorithms, are used to learn optimal
tasks-specific features. The impact of deep learning was
ground-breaking in computer vision [27] and natural language
processing [28] but was limited to specific domains by the
requirements on the regularity of data structures. At the
convergence of these two fields is graph machine learning (GML)
a new class of ML methods exploiting the structure of graphs and
other irregular datasets (point clouds, meshes, manifolds, etc).

The essential idea of GML methods is to learn effec-
tive feature representations of nodes [29, 30] (e.g. users

in social networks), edges (e.g. predicting future interac-
tions in recommender systems) or entire graphs [31] (e.g.
predicting properties of molecular graphs). In particular,
graph neural networks (GNNs) [32–34], which are deep neu-
ral network architectures specifically designed for graph-
structure data, are attracting growing interest. GNNs iteratively
update the features of the nodes of a graph by propa-
gating information from their neighbours. These methods
have already been successfully applied to a variety of tasks
and domains such as recommendation in social media and
E-commerce [35–38], traffic estimations in Google Maps [39],
misinformation detection in social media [40], and various
domains of natural sciences including modelling fluids, rigid
solids, and deformable materials interacting with one another
[41] and event classification in particle physics [42, 43].

In the biomedical domain, GML has now set the state of
the art for mining graph-structured data including drug–target–
indication interaction and relationship prediction through
knowledge graph embedding [30, 44, 45]; molecular property
prediction [21, 22], including the prediction of absorption,
distribution, metabolism and excretion (ADME) profiles [46];
early work in target identification [47] to de novo molecule design
[48, 49]. Most notably, Stokes et al. [50] used directed message
passing GNNs operating on molecular structures to propose
repurposing candidates for antibiotic development, validating
their predictions in vivo to propose suitable repurposing candi-
dates remarkably structurally distinct from known antibiotics.
Therefore, GML methods appear to be extremely promising in
applications across the drug development pipeline.

Compared to previous review papers on GML [51–55] for
the machine learning community or general reviews on ML
within drug development more broadly [56–58], the focus of
our paper is both for biomedical researchers without exten-
sive ML backgrounds and ML experts interested in biomedical
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applications — with a thematic focus on GML. We provide an
introduction to the key terms and building blocks of graph learn-
ing architectures (Definitions & Machine Learning on Graphs)
and contextualize these methodologies within the drug discov-
ery and development pipeline from an industrial perspective
for method developers without extensive biological expertize
(Drug Development Applications) before providing a closing dis-
cussion (Discussion).

Definitions
Notations and preliminaries of graph theory

We denote a graph G = (V,E, Xv, Xe) where V is a set of n =
|V| nodes, or vertices, and E ⊆ V × V is a set of m edges. Let
vi ∈ V denote a node and eij = (vi, vj) ∈ E denote an edge
from node vi to node vj. When multiple edges can connect
the same pair of nodes, the graph is called a multigraph. Node
features are represented by Xv ∈ R

n×d and xv
i ∈ R

d are the
d features of node vi. Edge features, or attributes, are simi-
larly represented by Xe ∈ R

m×c where xe
i,j = xe

vi ,vj
∈ R

c. We
may also denote different nodes as u and v such that eu,v =
(u, v) is the edge from u to v with attributes xe

u,v. Note that
under this definition, undirected graphs are defined as directed
graphs with each undirected edge represented by two directed
edges.

The neighbourhood N (v) of node v, sometimes referred to as
one-hop neighbourhood, is the set of nodes that are connected to it
by an edge, N (v) = {u ∈ V|(v, u) ∈ E}, with shorthand N (vi) = Ni

used for compactness. The cardinality of a node’s neighbour-
hood is called its degree and the diagonal degree matrix, D, has
elements Dii = |Ni|.

Two nodes vi and vj in a graph G are connected if there
exists a path in G starting at one and ending at the other, i.e.
there exists a sequence of consecutive edges of G connecting
the two nodes. A graph is connected if there exists a path
between every pair of nodes in the graph. The shortest path
distance between vi and vj is defined as the number of edges
in the shortest path between the two nodes and denoted
by d(vi, vj).

A graph S = (Ṽ, Ẽ, Xṽ, Xẽ) is a subgraph of G if and only if Ṽ ⊆ V
and Ẽ ⊆ E. If it also holds that Ẽ = (

Ṽ × Ṽ
) ∩ E, then S is called an

induced subgraph of G.
The adjacency matrix A typically represents the relations

between nodes such that the entry on the ith row and jth column
indicates whether there is an edge from node i to node j, with 1
representing that there is an edge, and 0 that there is not (i.e.
Aij = 1(vi, vj)). Most commonly, the adjacency matrix is a square
(from a set of nodes to itself), but the concept extends to bipartite
graphs where an N×M matrix can represent the edges from one
set of N nodes to another set of size M, and is sometimes used
to store scalar edge weights. The Laplacian matrix of a simple
(unweighted) graph is L = D − A. The normalized Laplacian
L = I − D−1/2AD−1/2 is often preferred, with a variant defined as
L̃ = I − D−1A.

Knowledge graph

The term knowledge graph is used to qualify a graph that captures
r types of relationships between a set of entities. In this case, Xe

includes relationship types as edge features. Knowledge graphs
are commonly introduced as sets of triplets (vi, k, vj) ∈ V ×
R × V, where R represents the set of relationships. Note that
multiple edges of different types can connect two given nodes.
As such, the standard adjacency matrix is ill-suited to capture

the complexity of a knowledge graph. Instead, a knowledge
graph is often represented as a collection of adjacency matrices
{A1, ..., Ar}, forming an adjacency tensor, in which each adjacency
matrix Ai captures one type of relationship.

Random walks

A random walk is a sequence of nodes selected at random
during an iterative process. A random walk is constructed by
considering a random walker that moves through the graph
starting from a node vi. At each step, the walker can either move
to a neighbouring node with probability p(vj|vi), vj ∈ Ni or stay on
node vi with probability p(vi|vi). The sequence of nodes visited
after a fixed number of steps k gives a random walk of length k.
Graph diffusion is a related notion that models the propagation
of a signal on a graph. A classic example is heat diffusion [59],
which studies the propagation of heat in a graph starting from
some initial distribution.

Graph isomorphism

Two graphs G = (VG,EG) and H = (VH,EH) are said to be iso-
morphic if there exists a bijective function f : VG �→ VH such
that ∀(gi, gj) ∈ EG, (f (gi), f (gj)) ∈ EH. Finding if two graphs are
isomorphic is a recurrent problem in graph analysis that has
deep ramifications for machine learning on graphs. For instance,
in graph classification tasks, it is assumed that a model needs to
capture the similarities between pairs of graphs to classify them
accurately.

The Weisfeiler-Lehman (WL) graph isomorphism test [60]
is a classical polynomial-time algorithm in graph theory. It is
based on iterative graph recolouring, starting with all nodes of
identical ‘colour’ (label). At each step, the algorithm aggregates
the colours of nodes and their neighbourhoods and hashes
the aggregated colour into unique new colours. The algorithm
stops upon reaching a stable colouring. If at that point, the
colourings of the two graphs differ, the graphs are deemed non-
isomorphic. However, if the colourings are the same, the graphs
are possibly (but not necessarily) isomorphic. In other words,
the WL test is a necessary but insufficient condition for graph
isomorphism. There exist non-isomorphic graphs for which the
WL test produces identical colouring and thus considers them
possibly isomorphic; the test is said to fail in this case [61].

Machine Learning on Graphs
Most machine learning methods that operate on graphs can be
decomposed into two parts: a general-purpose encoder and a
task-specific decoder [62]. The encoder embeds a graph’s nodes,
or the graph itself, in a low-dimensional feature space. To embed
entire graphs, it is common first to embed nodes and then
apply a permutation invariant pooling function to produce a
graph level representation (e.g. sum, max or mean over node
embeddings). The decoder computes an output for the associ-
ated task. The components can either be combined in two-step
frameworks, with the encoder pre-trained in an unsupervised
setting, or in an end-to-end fashion. The end tasks can be clas-
sified following multiple dichotomies: supervised/unsupervised,
inductive/transductive and node-level/graph-level.
Supervised/unsupervised task. This is the classic dichotomy
found in machine learning [63]. Supervised tasks aim to learn
a mapping function from labelled data such that the function
maps each data point to its label and generalizes to unseen
data points. In contrast, unsupervised tasks highlight unknown
patterns and uncover structures in unlabelled datasets.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/6/bbab159/6278145 by Shanghai Jiao Tong U

niversity user on 15 O
ctober 2022



4 Gaudelet et al.

Inductive/transductive task. Inductive tasks correspond to
supervised learning discussed above. Transductive tasks expect
that all data points are available when learning a mapping
function, including unlabelled data points [32]. Hence, in the
transductive setting, the model learns both from unlabelled and
labelled data. In this respect, inductive learning is more general
than transductive learning, as it extends to unseen data points.
Node-level/graph-level task. This dichotomy is based on the
object of interest. A task can either focus on the nodes within a
graph, e.g. classifying nodes within the context set by the graph,
or focus on whole graphs, i.e. each data point corresponds to
an entire graph [31]. Note that node-level tasks can be further
decomposed into node attribute prediction tasks [32] and link
inference tasks [30]. The former focuses on predicting properties
of nodes while the latter infers missing links in the graph.

As an illustration, consider the task of predicting the chemi-
cal properties of small molecules based on their chemical struc-
tures. This is a graph-level task in a supervised (inductive) setting
whereby labelled data is used to learn a mapping from chem-
ical structure to chemical properties. Alternatively, the task of
identifying groups of proteins that are tightly associated in a PPI
graph is an unsupervised node-level task. However, predicting
proteins’ biological functions using their interactions in a PPI
graph corresponds to a node-level transductive task.

Further, types of tasks can be identified, e.g. based on
whether we have static or varying graphs. Biological graphs can
vary and evolve along a temporal dimension resulting in changes
to composition, structure and attributes [64, 65]. However, the
classifications detailed above are the most commonly found
in the literature. We review below the existing classes of GML
methods.

Traditional approaches

Graph statistics

In the past decades, a flourish of heuristics and statistics
have been developed to characterize graphs and their nodes.
For instance, the diverse centrality measures capture different
aspects of graphs connectivity. The closeness centrality quantifies
how closely a node is connected to all other nodes, and
the betweenness centrality measures how many shortest paths
between pairs of other nodes a given node is part of. Further-
more, graph sub-structures can be used to derive topological
descriptors of the wiring patterns around each node in a graph.
For instance, motifs [66] and graphlets [67] correspond to sets
of small graphs used to characterize local wiring patterns of
nodes. Specifically, we can derive a feature vector with length
corresponding to the number of considered motifs (or graphlets)
where the ith element indicates the frequency of the ith motif.

These handcrafted features can provide node, or graph, rep-
resentations that can be used as input to machine learning algo-
rithms. A popular approach has been the definition of kernels
based on graph statistics that can be used as input to support
vector machines (SVM). For instance, the graphlet kernel [68]
captures node wiring patterns similarity, and the WL kernel [69]
captures graph similarity based on the WL algorithm discussed
in Section 2.

Random walks

Random-walk based methods have been a popular, and success-
ful, approach to embed a graph’s nodes in a low-dimensional
space such that node proximities are preserved. The underlying
idea is that the distance between node representations in the

embedding space should correspond to a measure of distance on
the graph, measured here by how often a given node is visited in
random walks starting from another node. Deepwalk [29] and
node2vec [70] are arguably the most famous methods in this
category.

In practice, Deepwalk simulates multiple random walks for
each node in the graph. Then, given the embedding xv

i of a node
vi, the objective is to maximize the log probability log p(vj|xv

i ) for
all nodes vj that appear in a random walk within a fixed window
of vi. The method draws its inspiration from the SkipGram model
developed for natural language processing [71].

DeepWalk uses uniformly random walks, but several follow-
up works analyze how to bias these walks to improve the learned
representations. For example, node2vec biases the walks to
behave more or less like certain search algorithms over the
graph. The authors report a higher quality of embeddings with
respect to information content when compared to Deepwalk.

Geometric approaches

Geometric models for knowledge graph embedding posit each
relation type as a geometric transformation from source to target
in the embedding space. Consider a triplet (s, r, t), s denoting
the source node and t denoting the target node. A geometric
model learns a transformation τ (·, ·) such that δ(τ (hs, hr), ht) is
small, with δ(·, ·) being some notion of distance (e.g. Euclidean
distance) and hx denoting the embedding of entity x. The key
differentiating choice between these approaches is the form of
the geometric transformation τ .

TransE [72] is a purely translational approach, where τ cor-
responds to the sum of the source node and relation embed-
dings. In essence, the model enforces that the motion from
the embedding hs of the source node in the direction given by
the relation embedding hr terminates close to the target node’s
embedding ht as quantified by the chosen distance metric. Due
to its formulation, TransE is not able to account effectively for
symmetric relationships or one-to-many interactions.

Alternatively, RotatE [30] represents relations as rotations in
a complex latent space. Thus, τ applies a rotation matrix hr,
corresponding to the relation, to the embedding vector of the
source node hs such that the rotated vector τ (hr, hs) lies close
to the embedding vector ht of the target node in terms of Man-
hattan distance. The authors demonstrate that rotations can cor-
rectly capture diverse relation classes, including symmetry/anti-
symmetry.

Matrix/tensor factorization

Matrix factorization is a common problem in mathematics
that aims to approximate a matrix X by the product of n low-
dimensional latent factors, Fi, i ∈ {1, ..., n}. The general problem
can be written as

F∗
1, ..., F∗

n = argminF1,...,Fn
�

(
X,

n∏
i=1

Fi

)
,

where �(·, ·) represents a measure of the distance between
two inputs, such as Euclidean distance or Kullback-Leibler
divergence. In machine learning, matrix factorization has been
extensively used for unsupervised applications such as dimen-
sionality reduction, missing data imputation and clustering.
These approaches are especially relevant to the knowledge
graph embedding problem and have set state-of-the-art (SOTA)
results on standard benchmarks [73].
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For graphs, the objective is to factorize the adjacency matrix
A, or a derivative of the adjacency matrix (e.g. Laplacian matrix).
It can effectively be seen as finding embeddings for all entities
in the graph on a low-dimensional, latent manifold under user-
defined constraints (e.g. latent space dimension) such that the
adjacency relationships are preserved under dot products.

Laplacian eigenmaps, introduced by Belkin et al. [74], is a
fundamental approach designed to embed entities based on a
similarity derived graph. Laplacian eigenmaps uses the eigen-
decomposition of the Laplacian matrix of a graph to embed
each of the n nodes of a graph G in a low-dimensional latent
manifold. The spectral decomposition of the Laplacian is given
by equation L = Q�Q
, where � is a diagonal matrix with entries
corresponding to the eigenvalues of L and column qk of Q gives
the eigenvector associated to the kth eigenvalue λk (i.e. Lqk =
λkqk). Given a user defined dimension m ≤ n, the embedding of
node vi is given by the vector (q0(i), q1(i), . . . , qm−1(i)), where q∗(i)
indicates the ith entry of vector q∗.

Nickel et al. [75] introduced RESCAL to address the knowl-
edge graph embedding problem. RESCAL’s objective function is
defined as

U∗, R∗
i = argminU,Ri

1
2

r∑
i=1

‖Ai − URiU
‖2
F + g(U, Ri),

where U ∈ R
n×k and ∀i, Ri ∈ R

k,k, with k denoting the latent space
dimension. The function g(·) denotes a regularizer, i.e. a function
applying constraints on the free parameters of the model, on the
factors U and {R1, .., Rr}. Intuitively, factor U learns the embedding
of each entity in the graph and factor Ri specifies the interac-
tions between entities under relation i. Yang et al. [76] proposed
DistMult, a variation of RESCAL that considers each factor Ri as a
diagonal matrix. Trouillon et al. [77] proposed ComplEx, a method
extending DistMult to the complex space taking advantage of the
Hermitian product to represent asymmetric relationships.

Alternatively, some existing frameworks leverage both
a graph’s structural information and the node’s semantic
information to embed each entity in a way that preserves both
sources of information. One such approach is to use a graph’s
structural information to regularize embeddings derived from
the factorization of the feature matrix Xv [78, 79]. The idea
is to penalize adjacent entities in the graph to have closer
embeddings in the latent space, according to some notion of
distance. Another approach is to jointly factorize both data
sources, for instance, introducing a kernel defined on the feature
matrix [80, 81].

Graph neural networks

GNNs were first introduced in the late 1990s [82–84] but have
attracted considerable attention in recent years, with the num-
ber of variants rising steadily [32–34, 44, 85–89]. From a high-
level perspective, GNNs are a realization of the notion of group
invariance, a general blueprint underpinning the design of a broad
class of deep learning architectures. The key structural property
of graphs is that the nodes are usually not assumed to be pro-
vided in any particular order, and any functions acting on graphs
should be permutation invariant (order-independent); therefore,
for any two isomorphic graphs, the output of said functions are
identical. A typical GNN consists of one or more layers imple-
menting a node-wise aggregation from the neighbour nodes;
since the ordering of the neighbours is arbitrary, the aggregation
must be permutation invariant. When applied locally to every
node of the graph, the overall function is permutation equivariant,

i.e. its output is changed in the same way as the input under
node permutations.

GNNs are amongst the most general class of deep learning
architectures currently in existence. Popular architectures such
as DeepSets [90], transformers [91] and convolutional neural net-
works [92] can be derived as particular cases of GNNs operating
on graphs with an empty edge set, a complete graph, and a
ring graph, respectively. In the latter case, the graph is fixed
and the neighbourhood structure is shared across all nodes; the
permutation group can therefore be replaced by the translation
group, and the local aggregation expressed as a convolution.
While a broad variety of GNN architecture exists, their vast
majority can be classified into convolutional, attentional and
message-passing ‘flavours’ — with message-passing being the
most general formulation.

Message passing networks

A message passing-type GNN layer is comprised of three func-
tions: (1) a message passing function Msg that permits infor-
mation exchange between nodes over edges; (2) a permutation-
invariant aggregation function Agg that combines the collection
of received messages into a single, fixed-length representation
(3) and an update function Update that produces node-level rep-
resentations given the previous representation and the aggre-
gated messages. Common choices are a simple linear transfor-
mation for Msg, summation, simple- or weighted-averages for
Agg and multilayer perceptrons (MLP) with activation functions
for the Update function, although it is not uncommon for the
Msg or Update function to be absent or reduced to an activation
function only. Where the node representations after layer t are
h(t), we have

msgji = Msg
(
h(t)

j , h(t)
i , xe

j,i

)

h(t+1)
i = Update

(
h(t)

i , Agg
(
msgji, j ∈ Ni

))

or, more compactly,

h(t+1)
i = γ (t+1)

(
h(t)

i , �j∈Ni
φ(t+1)

(
h(t)

i , h(t)
j , ej,i

))

where γ , � and φ are the update, aggregation and message
passing functions, respectively, and (t) indicates the layer index
[93]. The design of the aggregation � is important: when chosen
to be an injective function, the message passing mechanism can
be shown to be equivalent to the colour refinement procedure
in the WL algorithm [86]. The initial node representations, h(0)

i ,
are typically set to node features, xv

i . Figure 2 gives a schematic
representation of this operation.

Graph convolutional network

The graph convolutional network (GCN) [32] can be decomposed
in this framework as

Msg (. . . ) = W(t)h(t)
j

Agg (. . . ) =
∑
j∈Ni

1√
didj

msgj

Update (. . . ) = σ

(
1
di

W(t)h(t)
i + aggi

)

where σ is some activation function, usually a rectified linear
unit (ReLU). The scheme is simplified further if we consider the
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Figure 2. Illustration of a general aggregation step performed by a GNN for the

central node (green) based on its direct neighbours (orange). Messages may be

weighted depending on their content, the source or target node features or the

attributes of the edge they are passed along, as indicated by the thickness of

incoming arrows.

addition of self-loops, that is, an edge from a node to itself,
commonly expressed as the modified adjacency Â = A + I,
where the aggregation includes the self-message and the update
reduces to

Update (. . . ) = σ (aggi).

With respect to the notations in Figure 2, for GCN we have αi,j =
1√
didj

.

As the update depends only on a node’s local neighbourhood,
these schemes are also commonly referred to as neighbourhood
aggregation. Indeed, taking a broader perspective, a single-layer
GNN updates a node’s features based on its immediate or one-
hop neighbourhood. Adding a second GNN layer allows informa-
tion from the two-hop neighbourhood to propagate via interme-
diary neighbours. By further stacking GNN layers, node features
can come to depend on the initial values of more distant nodes,
analogous to the broadening the receptive field in later layers
of convolutional neural networks—the deeper the network, the
broader the receptive field (see Figure 3). However, this process
is diffusive and leads to features washing out as the graph ther-
malizes. This problem is solved in convolutional networks with
pooling layers, but an equivalent canonical coarsening does not
exist for irregular graphs.

Graph attention network

Graph attention networks (GAT) [33] weight incoming messages
with an attention mechanism and multi-headed attention for
train stability, including self-loops, the message, aggregation and
update functions

Msg (. . . ) = W(t)h(t)
j

Agg (. . . ) =
∑

j∈Ni∪i

αijmsgj

Update (. . . ) = σ
(
aggi

)

Figure 3. k-hop neighbourhoods of the central node (red). Typically, a GNN layer

operates on the 1-hop neighbourhood, i.e. nodes with which the central node

shares an edge, within the k = 1 circle. Stacking layers allows information from

more distant nodes to propagate through intermediate nodes.

are otherwise unchanged. Although the authors suggest the
attention mechanism is decoupled from the architecture and
should be task specific, in practice, their original formulation
is most widely used. The attention weights, αij are softmax
normalized, that is

αij = softmaxj(eij) = exp (eij)∑
k∈Ni

exp (eik)

where eij is the output of a single layer feed-forward neural
network without a bias (a projection) with LeakyReLU activa-
tions, that takes the concatenation of transformed source- and
target-node features as input,

eij = MLP
(
[W(t)h(t)

i ||W(t)h(t)
j ]

)

= LeakyReLU
(
a
[W(t)h(t)

i ||W(t)h(t)
j ]

)

where LeakyReLU(x) = max(x, λx); 0 ≤ λ ≤ 1.

Relational graph convolutional networks

At many scales of systems biology, the relationships between
entities have a type, a direction, or both. For instance, the type of
bonds between atoms, binding of two proteins, and gene regula-
tory interactions are essential to understanding the systems in
which they exist. This idea is expressed in the message passing
framework with messages that depend on edge attributes. Rela-
tional graph convolutional networks (R-GCNs) [44] learn separate
linear transforms for each edge type, which can be viewed as
casting the graph as a multiplex graph and operating GCN-like
models independently on each layer, as shown in Figure 4.

The R-GCN model decomposes to

Msgr (. . . ) = W(t)
r h(t)

j

Agg (. . . ) =
∑
r∈R

∑
j∈N r

i

1
ci,r

msgr
j

Update (. . . ) = σ
(
W(t)

0 h(t)
i + aggi

)

for edge types r ∈ R, with separate transforms W(t)
0 for self-loops,

and problem-specific normalization constant ci,r.
The different types of GNNs above illustrate some approaches

to define message passing on graphs. Note that there is no
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Figure 4. A multi-relational graph (A) can be parsed into layers of a multiplex

graph (B). The R-GCN learns a separate transform for each layer, and the self-loop

and messages are passed according to the connectivity of the layers. For example,

node (A) passes a message to node (B) in the top layer, receives a message from

(B) in the middle layer, and does not communicate with (B) in the bottom layer.

established best scheme for all scenarios and that each specific
application might require a different scheme.

Graph pooling

Geometric deep learning approaches machine learning with
graph-structured data as the generalization of methods
designed for learning with grid and sequence data (images,
time-series; Euclidean data) to non-Euclidean domains, i.e.
graphs and manifolds [94]. This is also reflected in the derivation
and naming conventions of popular GNN layers as generalized
convolutions [32, 44]. Modern convolutional neural networks
have settled on the combination of layers of 3 × 3 kernels
interspersed with 2×2 max-pooling. Developing a corresponding
pooling workhorse for GNNs is an active area of research. The
difficulty is that, unlike Euclidean data structures, there are no
canonical up- and down-sampling operations for graphs. As a
result, there are many proposed methods that centre around
learning to pool or prune based on features [95–99], and learned
or non-parametric structural pooling [100–103]. However, the
distinction between featural and structural methods is blurred
when topological information is included in the node features.

The most successful feature-based methods extract repre-
sentations from graphs directly either for cluster assignments
[95, 99] or for top-k pruning [96–98]. DiffPool uses GNNs both to
produce a hierarchy of representations for overall graph classifi-
cation and to learn intermediate representations for soft cluster
assignments to a fixed number of pools [95]. Figure 5 presents an
example of this kind of pooling. top-k pooling takes a similar
approach, but instead of using an auxiliary learning process to
pool nodes, it is used to prune nodes [96, 97]. In many settings,
this simpler method is competitive with DiffPool at a fraction of
the memory cost.

Structure-based pooling methods aggregate nodes based on
the graph topology and are often inspired by the processes devel-
oped by chemists and biochemists for understanding molecules
through their parts. For example, describing a protein in terms of
its secondary structure (α-helix, β-sheets) and the connectivity
between these elements can be seen as a pooling operation
over the protein’s molecular graph. Figure 6 shows how a small
molecule can be converted to a junction tree representation,
with the carbon ring (in pink) being aggregated into a single node.
Work on decomposing molecules into motifs bridges the gap
between handcrafted secondary structures and unconstrained
learning methods [103]. Motifs are extracted based on a com-
bined statistical and chemical analysis, where motif templates

Figure 5. A possible graph pooling schematic. Nodes in the original graph (left,

grey) are pooled into nodes in the intermediate graph (centre) as shown by the

dotted edges. The final pooling layer aggregates all the intermediate nodes into

a single representation (right, green). DiffPool could produce the pooling shown

[95].

Figure 6. Illustration of (A) the molecule aspirin, (B) its basic graph represen-

tation and (C) the associated junction tree representation. Colours on the node

correspond to atom types.

(i.e. graph substructures) are selected based on how frequently
they occur in the training corpus and molecules are then decom-
posed into motifs according to some chemical rules. More gen-
eral methods look to concepts from graph theory such as mini-
mum cuts [100, 102] and maximal cliques [101] on which to base
pooling. Minimum cuts are graph partitions that minimize some
objective and have obvious connections to graph clustering,
whilst cliques (subsets of nodes that are fully connected) are in
some sense at the limit of node community density.

Drug Development Applications
The process of discovering a drug and making it available to
patients can take up to 10 years and is characterized by failures,
or attrition, see Figure 1. The early discovery stage involves
target identification and validation, hit discovery, lead molecule
identification and then optimization to achieve the desired
characteristics of a drug candidate [114]. Pre-clinical research
typically comprises both in vitro and in vivo assessments of
toxicity, pharmacokinetics (PK), pharmacodynamics (PD) and
efficacy of the drug. Providing good pre-clinical evidence is
presented, the drug then progresses for human clinical trials
normally through three different phases of clinical trials. In
the following subsections, we explore how GML can be applied
to distinct stages within the drug discovery and development
process.

In Table 1, we provide a summary of how some of the key
work reviewed in this section ties to the methods discussed in
Section 3. Table 2 outlines the underlying key data types and
databases therein. Biomedical databases are typically presented
as general repositories with minimal reference to downstream
applications. Therefore, additional processing is often required
for a specific task; to this end, efforts have been directed
towards processed data repositories with specific endpoints in
mind [115, 116].
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Table 1. Exemplar references linking applications from Section 4 to methods described in Section 3. The entries in the data types column refers
to acronyms defined in Table 2. The last column indicates the presence of follow up experimental validation. ∗The authors consider a mesh
graph over protein surfaces.

Relevant application Ref. Method type Task level ML approach Data types Exp. val?

4.1 Target identification
− [47] Geometric (§3.2) Node-level Unsupervised Di, Dr, GA
4.2 Design of small molecules therapies
Molecular property prediction [21] GNN (§3.4) Graph-level Supervised Dr

[104] GNN (§3.4) Graph-level Supervised Dr
[22] GNN (§3.4) Graph-level Supervised Dr

Enhanced high throughput screens [50] GNN (§3.4) Graph-level Supervised Dr �

De novo design [105] GNN (§3.4) Graph-level Unsupervised Dr
[48] Factorisation (§3.3) Graph-level Semi-supervised Dr �

4.3 Design of new biological entities
ML-assisted directed evolution − − − − −

Protein engineering [49] GNN (§3.4) Subgraph-level ∗Supervised PS

De novo design [106] GNN (§3.4) Graph-level Supervised PS �
4.4 Drug repurposing
Off-target repurposing [107] Factorisation (§3.3) Node-level Unsupervised Dr, PI

[108] GNN (§3.4) Graph-level Supervised Dr, PS
[109] Factorisation (§3.3) Node-level Unsupervised Dr, Di

On-target repurposing [110] GNN (§3.4) Node-level Supervised Dr, Di
[111] Geometric (§3.2) Node-level Unsupervised Dr, Di, PI, GA

Combination repurposing [112] GNN (§3.4) Node-level Supervised Dr, PI, DC
[113] GNN (§3.4) Graph-level Supervised Dr, DC �

Table 2. Different types of data relevant to drug discovery and development applications with associated databases.

Type of data Databases Acronym

Drugs (structure, indications, targets) [117–121] Dr
Drug combinations [122, 123] DC
Protein (structure, sequence) [124] PS
Protein interactions [125, 126] PI
Gene annotations [127–129] GA
Diseases [127, 128, 130, 131] Di

Target identification

Target identification is the search for a molecular target with a
significant functional role(s) in the pathophysiology of a disease
such that a hypothetical drug could modulate said target cul-
minating with beneficial effect [132, 133]. Early targets included
G-protein coupled receptors (GPCRs), kinases, and proteases and
formed the major target protein families amongst first-in-class
drugs [134] — targeting other classes of biomolecules is also
possible, e.g. nucleic acids. For an organ-specific therapy, an ideal
target should be strongly and preferably expressed in the tissue
of interest, and preferably a three-dimensional structure should
be obtainable for biophysical simulations.

There is a range of complementary lines of experimental
evidence that could support target identification. For example, a
phenomenological approach to target identification could con-
sider the imaging, histological or -omic presentation of diseased
tissue when compared to matched healthy samples. Typical
differential presentation includes chromosomal aberrations (e.g.
from WGS), differential expression (e.g. via RNA-seq) and protein
translocation (e.g. from histopathological analysis) [135]. As the
availability of -omic technologies increases, computational and

statistical advances must be made to integrate and interpret
large quantities of high dimensional, high-resolution data on a
comparatively small number of samples, occasionally referred to
as panomics [136, 137].

In contrast to a static picture, in vitro and in vivo models are
built to examine the dynamics of disease phenotype to study
mechanism. In particular, genes are manipulated in disease
models to understand key drivers of a disease phenotype. For
example, random mutagenesis could be induced by chemicals
or transposons in cell clones or mice to observe the phenotypic
effect of perturbing certain cellular pathways at the putative
target protein [133]. As a targeted approach, bioengineering tech-
niques have been developed to either silence mRNA or remove
the gene entirely through genetic editing. In modern times,
CRISPR is being used to knockout genes in a cleaner manner
to prior technologies, e.g. siRNA, shRNA, TALEN [138–140]. Fur-
thermore, innovations have led to CRISPR interference (CRISPRi)
and CRISPR activation (CRISPRa) that allow for suppression or
overexpression of target genes [141].

To complete the picture, biochemical experiments observe
chemical and protein interactions to inform on possible
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drug mechanisms of action [132], examples include: affinity
chromatography, a range of mass spectrometry techniques for
proteomics, and drug affinity responsive target stability
assays [142–144]. X-ray crystallography and cryogenic electron
microscopy (cryo-EM) can be used to detail structures of proteins
to identify druggable pockets [145]; computational approaches
can be used to assess the impacts of mutations in cancer
resulting in perturbed crystal structures [146]. Yeast two-hybrid
or three-hybrid systems can be employed to detail genomic PPI
or RNA–protein interaction [147, 148].

Systems biology aims to unify phenomenological observa-
tions on disease biology (the ‘-omics view’), genetic drivers
of phenotypes (driven by bioengineering) through a network
view of interacting biomolecules [149]. The ultimate goal is
to pin down a ‘druggable’ point of intervention that could
hopefully reverse the disease condition. One of the outcomes
of this endeavour is the construction of signalling pathways; for
example, the characterization of the TGF-β, PI3K/AKT and Wnt-
dependent signalling pathways have had profound impacts on
oncology drug discovery [150–152].

In contrast to complex diseases, target identification
for infectious disease requires a different philosophy. After
eliminating pathogenic targets structurally similar to those
within the human proteome, one aims to assess the druggability
of the remaining targets. This may be achieved using knowledge
of the genome to model the constituent proteins when 3D
structures are not already available experimentally. The Blundell
group has shown that 70-80% of the proteins from Mycobacterium
tuberculosis and a related organism, Mycobacterium abscessus
(infecting cystic fibrosis patients), can be modelled via homology
[153, 154]. By examining the potential binding sites, such as the
catalytic site of an enzyme or an allosteric regulatory site, the
binding hotspot can be identified and the potential value as a
target estimated [155]. Of course, target identification is also
dependent on the accessibility of the target to a drug, as well as
the presence of efflux pumps — and metabolism of any potential
drug by the infectious agent.

From systems biology to machine learning on graphs

Organisms, or biological systems, consist of complex and
dynamic interactions between entities at multiple scales. At the
submolecular level, proteins are chains of amino acid residues
which fold to adopt highly specific conformational structures. At
the molecular scale, proteins and other biomolecules physically
interact through transient and long-timescale binding events to
carry out regulatory processes and perform signal amplification
through cascades of chemical reactions. By starting with a low-
resolution understanding of these biomolecular interactions,
canonical sequences of interactions associated with specific
processes become labelled as pathways that ultimately control
cellular functions and phenotypes. Within multicellular organ-
isms, cells interact with each other forming diverse tissues and
organs. A reductionist perspective of disease is to view it as
being the result of perturbations of the cellular machinery at the
molecular scale that manifest through aberrant phenotypes at
the cellular and organismal scales. Within target identification,
one is aiming to find nodes that upon manipulation lead to
a causal sequence of events resulting in the reversion from a
diseased to a healthy state.

It seems plausible that target identification will be the great-
est area of opportunity for machine learning on graphs. From a
genetics perspective, examining Mendelian traits and genome-
wide association studies linked to coding variants of drug targets
have a greater chance of success in the clinic [156, 157]. However,

when examining PPI networks, Fang et al. [158] found that various
protein targets were not themselves ‘genetically associated’, but
interacted with other proteins with genetic associations to the
disease in question. For example in the case of rheumatoid
arthritis (RA), tumour necrosis factor (TNF) inhibition is a pop-
ular drug mechanism of action with no genetic association —
but the interacting proteins of TNF including CD40, NFKBIA,
REL, BIRC3 and CD8A have variants that are known to exhibit
a genetic predisposition to RA.

Oftentimes, systems biology has focused on networks with
static nodes and edges, ignoring faithful characterization of
underlying biomolecules that the nodes represent. With GML, we
can account for much richer representations of biology account-
ing for multiple relevant scales, for example, graphical represen-
tation of molecular structures (discussed in Sections 4.2 and 4.3),
functional relationships within a knowledge graph (discussed
in Section 4.4), and expression of biomolecules. Furthermore,
GML can learn graphs from data as opposed to relying on pre-
existing incomplete knowledge [159, 160]. Early work utilizing
GML for target identification includes Pittala et al. [47], whereby
a knowledge graph link prediction approach was used to beat
the in house algorithms of open targets [161] to rediscover drug
targets within clinical trials for Parkinson’s disease.

The utilization of multi-omic expression data capturing
instantaneous multimodal snapshots of cellular states will
play a significant role in target identification as costs decrease
[162, 163] — particularly in a precision medicine framework
[136]. Currently, however, only a few panomic datasets are
publicly available. A small number of early adopters have
spotted the clear utility in employing GML [164], occasionally
in a multimodal learning [165, 166], or causal inference setting
[167]. These approaches have helped us move away from the
classical Mendelian ‘one gene – one disease’ philosophy and
appreciate the true complexity of biological systems.

Design of small molecule therapies

Drug design broadly falls into two categories: phenotypic drug
discovery and target-based drug discovery. Phenotypic drug dis-
covery (PDD) begins with a disease’s phenotype without hav-
ing to know the drug target. Without the bias from having a
known target, PDD has yielded many first-in-class drugs with
novel mechanisms of action [168]. It has been suggested that
PDD could provide the new paradigm of drug design, reducing
costs substantially and increasing productivity [169]. However,
drugs found by PDD are often pleiotropic and impose greater
safety risks when compared to target-oriented drugs. In contrast,
best-in-class drugs are usually discovered by a target-based
approach.

For target-based drug discovery, after target identification
and validation, ‘hit’ molecules would be identified via high-
throughput screening of compound libraries against the tar-
get [114], typically resulting in a large number of possible hits.
Grouping these into ‘hit series’ and they become further refined
in functional in vitro assays. Ultimately, only those selected via
secondary in vitro assays and in vivo models would be the drug
‘leads’. With each layer of screening and assays, the remaining
compounds should be more potent and selective against the
therapeutic target. Finally, lead compounds are optimized by
structural modifications, to improve properties such as PKPD,
typically using heuristics, e.g. Lipinski’s rule of five [170]. In addi-
tion to such structure-based approach, fragment-based (FBDD)
[171, 172] and ligand-based drug discovery (LBDD) have also
been popular [173, 174]. FBDD enhances the ligand efficiency

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/6/bbab159/6278145 by Shanghai Jiao Tong U

niversity user on 15 O
ctober 2022



10 Gaudelet et al.

and binding affinity with fragment-like leads of ∼150 Da, whilst
LBDD does not require 3D structures of the therapeutic targets.

Both phenotypic- and target-based drug discovery comes
with their own risks and merits. While the operational costs
of target ID may be optional, developing suitable phenotypic
screening assays for the disease could be more time-consuming
and costly [169, 175]. Hence, the overall timeline and capital costs
are roughly the same [175].

In this review, we make no distinction between new chem-
ical entities (NCE), new molecular entities (NME) or new active
substances (NAS) [176].

Modelling philosophy

For a drug, the base graph representation is obtained from
the molecule’s SMILES signature and captures bonds between
atoms, i.e. each node of the graph corresponds to an atom and
each edge stands for a bond between two atoms [21, 22]. The
features associated with atoms typically include its element,
valence and degree. Edge features include the associated bond’s
type (single, double, triple), its aromaticity, and whether it is part
of a ring or not. Additionally, Klicpera et al. [22] consider the
geometric length of a bond and geometric angles between bonds
as additional features. This representation is used in most appli-
cations, sometimes complemented or augmented with heuristic
approaches.

To model a graph structure, Jin et al. [105] used the base
graph representation in combination with a junction tree derived
from it. To construct the junction tree, the authors first define a
set of molecule substructures, such as rings. The graph is then
decomposed into overlapping components, each corresponding
to a specific substructure. Finally, the junction tree is defined
with each node corresponding to an identified component and
each edge associates overlapping components.

Jin et al. [103] then extended their previous work by using
a hierarchical representation with various coarseness of the
small molecule. The proposed representation has three levels:
(1) an atom layer, (2) an attachment layer and (3) a motif layer.
The first level is simply the basic graph representation. The
following levels provide the coarse and fine-grain connection
patterns between a molecule’s motifs. Specifically, the attach-
ment layer describes at which atoms two motifs connect, while
the motif layer only captures if two motifs are linked. Consid-
ering a molecule base graph representation G = (V,E), a motif
is defined as a subgraph of G induced on atoms in V and bonds
in E. Motifs are extracted from a molecule’s graph by breaking
bridge bonds.

Kajino [177] opted for a hypergraph representation of small
molecules. A hypergraph is a generalization of graphs in which
an edge, called a hyperedge, can connect any number of nodes.
In this setting, a node of the hypergraph corresponds to a bond
between two atoms of the small molecule. In contrast, a hyper-
edge then represents an atom and connects all its bonds (i.e.
nodes).

Molecular property prediction

Pharmaceutical companies may screen millions of small
molecules against a specific target, e.g. see GlaxoSmithKline’s
DNA-encoded small molecule library of 800 million entries
[178]. However, as the end result will be optimized via a skilled
medicinal chemist, one should aim to substantially cut down
the search space by screening only a representative selection of
molecules for optimization later. One route towards this is to
select molecules with heterogeneous chemical properties using

GML approaches. This is a popular task with well-established
benchmarks such as QM9 [179] and MD17 [180]. Top-performing
methods are based on GNNs.

For instance, using a graph representation of drugs, Duve-
naud et al. [21] have shown substantial improvements over non-
graph-based approaches for molecule property prediction tasks.
Specifically, the authors used GNNs to embed each drug and
tested the predictive capabilities of the model on diverse bench-
mark datasets. They demonstrated improved interpretability of
the model and predictive superiority over previous approaches
which relied on circular fingerprints [181]. The authors use a
simple GNN layer with a read-out function on the output of each
GNN layer that updates the global drug embedding.

Alternatively, Schutt et al. [182] introduced SchNet, a model
that characterizes molecules based on their representation as
a list of atoms with interatomic distances, that can be viewed
as a fully connected graph. SchNet uses learned embeddings for
each atom using two modules: (1) an atom-wise module and (2)
an interaction module. The former applies a simple MLP trans-
formation to each atom representation input, while the latter
updates the atom representation based on the representations
of the other atoms of the molecule and using relative distances
to modulate contributions. The final molecule representation
is obtained with a global sum pooling layer over all atoms’
embeddings.

With the same objective in mind, Klicpera et al. [22] recently
introduced DimeNet, a novel GNN architecture that diverges
from the standard message passing framework presented in
Section 3. DimeNet defines a message coefficient between
atoms based on their relative positioning in 3D space. Specif-
ically, the message from node vj to node vi is iteratively updated
based on vj’s incoming messages as well as the distances
between atoms and the angles between atomic bonds. DimeNet
relies on more geometric features, considering both the angles
between different bonds and the distance between atoms. The
authors report substantial improvements over SOTA models
for the prediction of molecule properties on two benchmark
datasets.

Most relevant to the later stages of preclinical work, Feinberg
et al. extended previous work on molecular property prediction
[104] to include ADME properties [46]. In this scenario, by only
using structures of drugs predictions were made across a diverse
range of experimental observables, including half-lives across
in vivo models (rat, dog), human Ether-à-go-go-Related Gene
protein interactions and IC50 values for common liver enzymes
predictive of drug toxicity.

Enhanced high-throughput screens

Within the previous section, chemical properties were a priori
defined. In contrast, Stokes et al. [50] leveraged results from
a small phenotypic growth inhibition assay of 2335 molecules
against Escherichia coli to infer antibiotic properties of the ZINC15
collection of >107 million molecules. After ranking and curating
hits, only 23 compounds were experimentally tested — leading
to halicin being identified. Of particular note was that the Tani-
moto similarity of halicin when compared its nearest neighbour
antibiotic, metronidazole, was only ∼0.21 — demonstrating the
ability of the underlying ML to generalize to diverse structures.

Testing halicin against a range of bacterial infections,
including Mycobacterium tuberculosis, demonstrated broad-
spectrum activity through selective dissipation of the �pH
component of the proton motive force. In a world first, Stokes
et al. showed efficacy of an AI-identified molecule in vivo

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/6/bbab159/6278145 by Shanghai Jiao Tong U

niversity user on 15 O
ctober 2022



GML in Drug Disc. & Dev. 11

(Acinetobacter baumannii infected neutropenic BALB/c mice) to
beat the standard of care treatment (metronidazole) [50].

De novo design

A more challenging task than those previously discussed is de
novo design of small molecules from scratch; that is, for a fixed
target (typically represented via 3D structure) can one design a
suitable and selective drug-like entity?

In the landmark paper, Zhavoronkov et al. [48] created a novel
chemical matter against discoidin domain receptor 1 (DDR1)
using a variational autoencoder style architecture. Notably, they
penalize the model to select structures similar to disclosed drugs
from the patent literature. As the approach was designed to
find small molecules for a well-known target, crystal structures
were available and subsequently utiliszed. Additionally, the ZINC
dataset containing hundreds of millions of structures was used
(unlabelled data) along with confirmed positive and negative
hits for DDR1.

In total, six compounds were synthesized with four attain-
ing <1μMIC50 values. Whilst selectivity was shown for two
molecules of DDR1 when compared to DDR2, selectivity against
a larger panel of off-targets was not shown. Whilst further
development (e.g. PK or toxicology testing) was not shown,
Zhavoronkov et al. demonstrated de novo small molecule design
in an experimental setting [48]. Arguably, the recommendation
of an existing molecule is a simpler task than designing one
from scratch.

Design of new biological entities

New biological entities (NBE) refer to biological products or bio-
logics, that are produced in living systems [183]. The types of
biologics are very diversified, from proteins (>40 amino acids),
peptides, antibodies, to cell and gene therapies. Therapeutic
proteins tend to be large, complex structured and are unstable
in contrast to small molecules [184]. Biologic therapies typi-
cally use cell-based production systems that are prone to post-
translational modification and are thus sensitive to environ-
mental conditions requiring mass spectrometry to characterize
the resulting heterogeneous collection of molecules [185].

In general, the target-to-hit-to-lead pathway also applies to
NBE discovery, with similar procedures like high-throughput
screening assays. Typically, an affinity-based high-throughput
screening method is used to select from a large library of candi-
dates using one target. One must then separately study off-target
binding from similar proteins, peptides and immune surveil-
lance [186].

Modelling philosophy

Focusing on proteins, the consensus to derive the protein graph
representation is to use pairwise spatial distances between
amino acid residues, i.e. the protein’s contact map, and to apply an
arbitrary cut-off or Gaussian filter to derive adjacency matrices
[19, 20, 187], see Figure 7.

However, protein structures are substantially more complex
than small molecules and, as such, there are several resulting
graph construction schemes. For instance, residue-level graphs
can be constructed by representing the intramolecular inter-
actions, such as hydrogen bonds, that compose the structure
as edges joining their respective residues. This representation
has the advantage of explicitly encoding the internal chemistry
of the biomolecule, which determines structural aspects such
as dynamics and conformational rearrangements. Other edge

Figure 7. Illustration of (A) a protein (PDB accession: 3EIY) and (B) its graph

representation derived based on intramolecular distance with cut-off threshold

set at 10Å.

constructions can be distance-based, such as K-NN (where a
node is joined to its k most proximal neighbours) [19, 20] or based
on Delaunay triangulation. Node features can include structural
descriptors, such as solvent accessibility metrics, encoding the
secondary structure, distance from the centre or surface of the
structure and low-dimensional embeddings of physicochemical
properties of amino acids. It is also possible to represent proteins
as large molecular graphs at the atomic level in a similar manner
to small molecules. Due to the plethora of graph construction
and featurization schemes available, tools are being made avail-
able to facilitate the pre-processing of said protein structure
[188].

One should note that sequences can be considered as special
cases of graphs and are compatible with graph-based methods.
However, in practice, language models are preferred to derive
protein embeddings from amino acids sequences [189, 190].
Recent works suggest that combining the two can increase the
information content of the learnt representations [187, 191].
Several recurrent challenges in the scientific community aim to
push the limit of current methods. For instance, the CAFA [192]
and CAPRI [193] challenges aim to improve protein functional
classification and PPI prediction.

ML-assisted directed evolution

Display technologies have driven the modern development of
NBEs; in particular, phage display and yeast display are widely
used for the generation of therapeutic antibodies. In general,
a peptide or protein library with diverse sequence variety is
generated by PCR, or other recombination techniques [194]. The
library is ‘displayed’ for genotype–phenotype linkage such that
the protein is expressed and fused to surface proteins while
the encoding gene is still encapsulated within the phage or
cell. Therefore, the library could be screened and selected, in
a process coined ‘biopanning’, against the target (e.g. antigen)
according to binding affinity. Thereafter, the selected peptides
are further optimized by repeating the process with a refined
library. In phage display, selection works by physical capture and
elution [195]; for cell-based display technologies (like yeast dis-
play), fluorescence-activated cell sorting is utilized for selection
[196].

Due to the repeated iteration of experimental screens and the
high number of outputs, such display technologies are now being
coupled to ML systems for greater speed, affinity and further
in silico selection [197, 198]. As of yet, it does not appear that
advanced GML architectures have been applied in this domain,
but promising routes forward have been recently developed. For
example, Hawkins-Hooker et al. [199] trained multiple variational
autoencoders on the amino acid sequences of 70 000 luciferase-
like oxidoreductases to generate new functional variants of the
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luxA bacterial luciferase. Testing these experimentally led to
variants with increased enzyme solubility without disrupting
function. Using this philosophy, one has a grounded approach
to refine libraries for a directed evolution screen.

Protein engineering

Some proteins have reliable scaffolds that one can build upon,
for example, antibodies whereby one could modify the variable
region but leave the constant region intact. For example, Deac
et al. [200] used dilated (á trous) convolutions and self-attention
on antibody sequences to predict the paratope (the residues on
the antibody that interact with the antigen) as well as a cross-
modal attention mechanism between the antibody and antigen
sequences. Crucially, the attention mechanisms also provide a
degree of interpretability to the model.

In a protein-agnostic context, Fout et al. [19] used Siamese
architectures [201] based on GNNs to predict at which amino
acid residues are involved in the interface of a protein–protein
complex. Each protein is represented as a graph where nodes
correspond to amino acid residues and edges connect each
residue to its k closest residues. The authors propose multi-
ple aggregation functions with varying complexities and fol-
lowing the general principles of a diffusion convolutional neu-
ral network [202]. The output embeddings of each residue of
both proteins are concatenated all-to-all and the objective is to
predict if two residues are in contact in the protein complex
based on their concatenated embeddings. The authors report
a significant improvement over the method without the GNN
layers, i.e. directly using the amino acid residue sequence and
structural properties (e.g. solvent accessibility, distance from the
surface).

Gainza et al. [49] recently introduced molecular surface inter-
action fingerprinting (MaSIF) for tasks such as, binding pocket
classification or protein interface site prediction. The approach
is based on GML applied on mesh representations of the solvent-
excluded protein surface, abstracting the underlying sequence
and internal chemistry of the biomolecule. In practice, MaSIF
first discretizes a protein surface with a mesh where each point
(vertex) is considered as a node in the graph representation.
Then, the protein surface is decomposed into overlapping small
patches based on the geodesic radius, i.e. clusters of the graph.
For each patch, geometric and chemical features are handcrafted
for all nodes within the patch. The patches serve as bases for
learnable Gaussian kernels [203] that locally average node-wise
patch features and produce an embedding for each patch. The
resulting embeddings are fed to task-dependent decoders that,
for instance, give patch-wise scores indicating if a patch overlaps
with an actual protein-binding site.

De novo design

One of the great ambitions of bioengineering is to design pro-
teins from scratch. In this case, one may have an approxi-
mate structure in mind, e.g. to inhibit the function of another
endogenous biomolecule. This motivates the inverse protein-
folding problem, identifying a sequence that can produce a pre-
determined protein structure. For instance, Ingraham et al. [191]
leveraged an autoregressive self-attention model using graph-
based representations of structures to predict corresponding
sequences.

Strokach et al. [106] leveraged a deep GNN to tackle protein
design as a constraint satisfaction problem. Predicted struc-
tures resulting from novel sequences were initially assessed
in silico using molecular dynamics and energy-based scoring.
Subsequent in vitro synthesis of sequences led to structures that

matched the secondary structure composition of serum albumin
evaluated using circular dichroism.

With a novel amino acid sequence that could generate the
desired shape of an arbitrary protein, one would then want to
identify potential wanted and unwanted effects via functional
annotations. These include enzyme commission (EC) numbers,
a hierarchy of labels to characterize the reactions that an enzyme
catalyzes — previously studied by the ML community [204, 205].

Zamora et al. [20] developed a pipeline based on graph repre-
sentations of a protein’s amino acid residues for structure clas-
sification. The model consists of the sequential application of
graph convolutional blocks. A block takes as input two matrices
corresponding to residue features and coordinates, respectively.
The block first uses a layer to learn Gaussian filters applied on
the proteins’ spatial distance kernel, hence deriving multiple
graph adjacency matrices. These are then used as input graphs
in a GNN layer which operates on the residue features. The
block then performs a 1D average pooling operation on both
the feature matrix and the input coordinate matrix, yielding
the outputs of the block. After the last block, the final feature
matrix is fed to a global attention pooling layer which computes
the final embedding of the protein used as input to an MLP
for classification. The model performs on par with existing 3D-
CNN-based models. However, the authors observe that it is more
interpretable, enabling the identification of substructures that
are characteristic of structural classification.

Recently, Gligorijevic et al. [187] proposed DeepFRI, a model
that predicts a protein’s functional annotations based on struc-
ture and sequence information. The authors define the graph
representation of a protein-based on the contact map between
its residues. They first use a pre-trained language module that
derives XV, each protein’s graph is then fed to multiple GCN lay-
ers [32]. The outputs of each GCN layer are concatenated to give
the final embedding of a protein that is fed to an MLP layer giving
the final functional predictions. The authors report substantial
improvements over SOTA methods. Furthermore, they highlight
the interpretability of their approach, demonstrating the ability
to associate specific annotations with particular structures.

Drug repurposing

The term drug repurposing is used to describe the use of
an existing drug, whether approved or in development as a
therapy, for an indication other than the originally intended
indication. Considering that only 12% of drugs that reach clinical
trials receive FDA approval, repurposed drugs offer an attractive
alternative to new therapies as they are likely to have shorter
development times and higher success rates with early stages
of drug discovery already completed. It has been estimated that
repurposed treatments account for 30% of newly FDA approved
drugs and their associated revenues [206], and that up to 75%
of entities could be repurposed [207]. Note that we incorporate
product line extensions within drug repurposing whereby one
wishes to identify secondary indications, different formulations
for an entity, or partner drugs for combination therapies.

As such, there is a major interest in using in silico methods
to screen and infer new treatment hypotheses [208]. Drug
repurposing relies on finding new indications for existing
molecules, either by identifying actionable pleiotropic activity
(off-target repurposing), similarities between diseases (on-target
repurposing), or by identifying synergistic combinations of
therapies (combination repurposing). Well-known examples
include: ketoconazole (Nizoral) used to treat fungal infections via
enzyme CYP51A1 and now used to treat Cushing syndrome via
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off-target interactions with CYP17A1 (steroid synthesis/degra-
dation), NR3C4 (androgen receptor) and NR3C1 (glucocorticoid
receptor); sildenafil (Viagra) originally intended for pulmonary
arterial hypertension on-target repurposed to treat erectile
dysfunction; and Genvoya, a combination of emtricitabine,
tenofovir alafenamide (both reverse transcriptase inhibitors),
elvitegravir (an integrase inhibitor) and cobicistat (a CYP3A
inhibitor to improve PK) to treat human immunodeficiency
virus.

Off-target repurposing

Estimates suggest that each small molecule may interact with
tens, if not hundreds of proteins [209]. Due to small molecule
pleiotropy — particularly from first-in-class drugs [169] — off-
targets of existing drugs can be a segue to finding new indica-
tions.

A variety of traditional techniques are used to identify miss-
ing drug–target interactions. For instance, when the structure of
the protein is known, these stem from biophysical simulations,
i.e. molecular docking or molecular dynamics. Depending on
how one thresholds sequence similarity between the ∼21 000
human proteins, structural coverage whereby a 3D structure
of the protein exists ranges from 30 (≥ 98% seq. sim.) to 70%
(≥ 30% seq. sim.) [210]. However, ∼34% of proteins are classi-
fied as intrinsically disordered proteins with no 3D structure
[211, 212]. Besides, drugs seldom have a fixed shape due to the
presence of rotatable bonds. There is now a growing body of
GML literature to infer missing drug–target interactions both
with and without relying on the availability of a 3D protein
structure.

Requiring protein structures, Torng et al. [108] focused on the
task of associating drugs with protein pockets they can bind
to. Drugs are represented based on their atomic structures and
protein pockets are characterized with a set of key amino acid
residues connected based on Euclidean distance. Drug embed-
dings are obtained with the GNN operator from Duvenaud et
al. [21]. To derive embeddings of protein pockets, the authors
first use two successive graph autoencoders with the purposes
of (1) deriving a compact feature vector for each residue, and
(2) deriving a graph-level representation of the protein pocket
itself. These autoencoders are pre-trained, with the encoder
of the first serving as input to the second. Both encoders are
then used as input layers of the final model. The association
prediction between a drug and a protein pocket is then obtained
by feeding the concatenation of the drug and pocket representa-
tions to an MLP layer. The authors report improved performance
against the previous SOTA model based on a 3D-CNN oper-
ating on a grid-structure representation of the protein pocket
[213].

A range of GML methods for drug–target interaction do
not require protein structure. For instance, Gao et al. [214] use
two encoders to derive embeddings for proteins and drugs,
respectively. For the first encoder, recurrent neural networks
are used to derive an embedding matrix of the protein-based
on its sequence and functional annotations. For the second
encoder, each drug is represented by its underlying graph of
atoms and the authors use GNNs to extract an embedding matrix
of the graph. They use three layers of a graph isomorphism
network [86] to build their subsequent architecture. Finally, a
global attention pooling mechanism is used to extract vector
embeddings for both drugs and proteins based on their matrix
embeddings. The two resulting vectors are fed into a Siamese
neural network [201] to predict their association score. The

proposed approach is especially successful compared to baseline
for cold-start problems where the protein and/or drug are not
present in the training set.

Alternatively, Nascimento et al. [215] introduce KronRLS-
MKL, a method that casts drug–target interaction prediction
as a link prediction task on a bi-partite graph capturing drug–
protein binding. The authors define multiple kernels capturing
either drug similarities or protein similarities based on multiple
sources of data. The optimization problem is posed as a
multiple kernel learning problem. Specifically, the authors
use the Kronecker operator to obtain a kernel between drug–
protein pairs. The kernel is then used to predict a drug–
protein association based on their similarity to existing drug–
target link. Crichton et al. [216] cast the task in the same
setting. However, the authors use existing embedding methods,
including node2vec [70], deepwalk [29] and LINE [217], to embed
nodes in a low-dimensional space such that the embeddings
capture the local graph topology. The authors feed these
embeddings to a machine learning model trained to predict
interactions. The underlying assumption is that a drug will be
embedded closer to its protein targets.

Similarly, Olayan et al. [107] propose DDR to predict drug–
target interactions. The authors first build a graph where
each node represents either a drug or a protein. In addition
to drug–protein edges, an edge between two drugs (or two
proteins) represents their similarity according to a predefined
heuristic from multiple data sources. DDR embeds each drug–
protein pair based on the number of paths of predefined
types that connect them within the graph. The resulting
embeddings are fed to a random forest algorithm for drug–target
prediction.

Recently, Mohamed et al. [218] proposed an end-to-end
knowledge graph embedding model to identify off-target
interactions. The authors construct a large knowledge graph
encompassing diverse data pertaining to drugs and proteins,
such as associated pathways and diseases. Using an approach
derived from DistMult and ComplEx, the authors report
state-of-the-art results for off-target prediction.

On-target repurposing

On-target repurposing takes a holistic perspective and uses
known targets of a drug to infer new putative indications
based on diverse data. For instance, one can identify functional
relationships between a drug’s targets and genes associated with
a disease. Also, one may look for similarities between diseases
— especially those occurring in different tissues. Hypothetically,
one could prospectively find repurposing candidates in the
manner of Fang et al. [158] by finding a missing protein-protein
interactions between a genetically validated target and a drug’s
primary target. Knowledge graph completion approaches have
been particularly effective in addressing these tasks.

For instance, Yang et al. [109] introduced bounded nuclear
norm regularization (BNNR). The authors build a block matrix
with a drug similarity matrix, a disease similarity matrix, and
a disease–drug indication matrix. The method is based on the
matrix completion property of singular value thresholding algo-
rithm applied to the block matrix. BNNR incorporates regu-
larization terms to balance approximation error and matrix
rank properties to handle noisy drug–drug and disease–disease
similarities. It also adds a constraint that clips the association
scores to the interval [0, 1]. The authors report performance
improvements when compared to competing approaches.

Alternatively, Wang et al. [110] recently proposed an approach
to predict new drug indications based on two bipartite
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graphs, capturing drug–target interactions and disease–gene
associations, and a PPI graph. Their algorithm is composed of
an encoder module, relying on GAT [33], and an MLP decoder
module. The encoder derives drug and disease embeddings
through the distillation of information along the edges of the
graphs. The input features for drugs and diseases are based on
similarity measures. On the one hand, drug features correspond
to the Tanimoto similarities between its SMILES representation
and that of the other drugs. On the other hand, a disease’s
features are defined by its similarity to other diseases computed
based on MeSH-associated terms.

Combination repurposing

Combination drugs have been particularly effective in diseases
with complex aetiology or an evolutionary component where
resistance to treatment is common, such as infectious diseases.
If synergistic drugs are found, one can reduce dose whilst
improving efficacy [219, 220]. Strategically, combination ther-
apies provide an additional way to extend the indications and
efficacy of available entities. They can be used for a range of
purposes, for example, convenience and compliance as a fixed-
dose formulation (e.g. valsartan and hydrochlorothiazide for
hypertension [221]), to achieve synergies (e.g. co-trimoxazole:
trimethoprim and sulfamethoxazole for bacterial infections),
to broaden spectrum (e.g. for treatment of infections by an
unknown pathogen), or to combat disease resistance (e.g.
multi-drug regimens for drug-sensitive and drug-resistant
tuberculosis). The number of potential pairwise combinations of
just two drugs makes a brute force empirical laboratory testing
approach a lengthy and daunting prospect. To give a rough
number, there exist around 4000 approved drugs which would
require ∼8 million experiments to test all possible combinations
of two drugs at a single dose. Besides, there are limitless ways to
change the dosage and the timing of treatments, as well as the
delivery method.

Arguably some of the first work using GML to model combi-
nation therapy was DECAGON by Zitnik et al. [112] used to model
polypharmacy side-effects via a multi-modal graph capturing
drug–side effect–drug triplets in addition to PPI interactions. In
contrast, Deac et al. [222] forwent incorporation of a knowledge
graph instead modelling drug structures directly and using a
coattention mechanism to achieve a similar level of accuracy.
Typically architectures predicting drug–drug antagonism can be
minimally adapted for prediction of synergy. However, more
nuanced architectures are emerging combining partial knowl-
edge of drug–target interactions with target–disease machine
learning modules [113].

Outlook

In the last year to address the unprecedented COVID-19 global
health crisis, multiple research groups have explored graph-
based approaches to identify drugs that could be repurposed
to treat SARS-CoV-2 [111, 223–225]. For instance, Morselli et al.
[224] proposed an ensemble approach combining three different
graph-based association strategies. The first two are similar
in principle. First, each drug and each disease is represented
by the set of proteins that it targets. Second, the association
between a drug and a disease is quantified based on the distance
between the two sets on a PPI graph. The two approaches differ
on whether the distance is quantified with shortest paths or
random walks. The last strategies rely on GNNs for multimodal
graphs (knowledge graph). The graph contains PPIs, drug–target
interactions, disease–protein associations and drug indications.

The formulation of the GNN layer is taken from the DECAGON
model [112], an architecture similar to the R-GCN model [44].

Alternatively, Zeng et al. [111] use RotatE to identify repur-
posing hypotheses to treat SARS-CoV-2 from a large knowledge
graph constructed from multiple data sources and capturing
diverse relationships between entities such as drugs, diseases,
genes and anatomies. Additionally, Ioannidis et al. [225] proposed
a modification of the RGCN architecture to handle few-shot
learning settings in which some relations only connect a handful
of nodes.

In the rare disease arena, Sosa et al. [226] introduced a
knowledge graph embedding approach to identify repurposing
hypotheses for rare diseases. The problem is cast as a link
prediction problem in a knowledge graph. The authors use the
Global Network of Biological Relationships [227], a knowledge
graph built through literature mining and that contains diverse
relationships between diseases, drugs and genes. Due to
the uncertainty associated with associations obtained from
literature mining, the authors use a knowledge graph embedding
approach design to account for uncertainty [228]. Finally,
the highest ranking associations between drugs and rare
diseases are investigated, highlighting literature and biological
support.

Drug repurposing is now demonstrating itself as a first use
case of GML methods likely to lead to new therapies within
the coming years. Outside of the pharmaceutical industry, GML
methods recommending nutraceuticals [229] may also offer fast
routes to market through generally recognized as safe regulatory
designations.

Discussion
We have discussed how GML has produced the state-of-the-
art results both on graph-level problems for the description of
drugs and other biomolecules, and node-level problems for the
navigation of knowledge graphs and representation of disease
biology. With the design, synthesis and testing of de novo small
molecules [48], the in vitro and in vivo testing of drug repur-
posing hypotheses [50], and target identification frameworks
being conceptualized [47], we are potentially entering into a
golden age of validation for GML within drug discovery and
development.

A few key hurdles limit lossless representation of biology. At
the molecular level, bonds can be either rotatable single bonds or
fixed bonds; accurately representing the degrees of freedom of a
molecule is a topic of active research [230]. At the cellular level,
expression of mRNA and proteins exhibit stochastic dynamics
[231, 232]. A pathway is not expressed in a binary fashion: some
proteins may only have the potential to be expressed, e.g. via
unspliced pre-mRNA, and meanwhile, proteases are actively
recycling unwanted proteins. Historically, most -omic platforms
have recorded an average ‘bulk’ signal; however, with the recent
single-cell revolution, GML offers a principled approach to the
characterization of signalling cascades.

GML is still in its infancy, and underlying theoretical guar-
antees and limitations are under active research. For instance,
deeper GNNs suffer from oversmoothing of features and over-
squashing of information. Oversmoothing is the phenomenon of
features washing out through repeated rounds of message pass-
ing and aggregation [233]. The inverse, having too few layers to
exchange information globally, is referred to as under-reaching
[234]. These issues have limited the expressivity of traditional
GNNs [235, 236]. To alleviate this, a promising direction is to
incorporate global information in the model, for instance, by
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using contrastive approaches [31, 237], by augmenting the frame-
work with relative positioning to anchor nodes [238, 239], or by
implementing long-range information flow [230].

Due to the problem of missing data within biomedical knowl-
edge graphs, we envisage opportunities for active learning to be
deployed to label critical missing data points to explore exper-
imentally and therefore reduce model uncertainty [240]. Due
to the significant expense associated with drug discovery and
development, integrating in silico modelling and experimental
research is of great strategic importance. While active learning
has previously led to biased datasets in other settings, modern
techniques are addressing these drawbacks [241, 242].

Finally, because GML allows for the representation of
unstructured multimodal datasets, one can expect to see
tremendous advances made within data integration. Most
notably, highly multiplexed single-cell omic technologies are
now being expanded in spatial settings [243, 244]. In addition,
CRISPR screening data with associated RNA sequencing readouts
are emerging as promising tools to identify key genes controlling
a cellular phenotype [245].

Key Points
• Historically, analysis of biomolecular interaction and

gene regulatory networks has been of huge academic
interest, but with limited translatable results within
drug discovery and development.

• Network medicine has offered promising results using
handcrafted graph features but lacked any prin-
cipled solution to the problem of integrating dis-
parate biological data sources: structural data (drugs
and biomolecules), functional relationships (inhibi-
tion, activation, etc) and expression (from RNA-seq,
proteomics, etc).

• Deep learning has now been applied to a number
of areas within biomedical research, in particular,
achieving superior-to-physician results in the inter-
pretation of biomedical images, e.g. histopathological
specimens.

• Graph ML blends the techniques of network topology
analysis with deep learning to learn effective feature
representations of nodes.

• Graph ML has been applied to problems within
drug discovery and development to huge success
with emerging experimental results: design of small
molecules, prediction of drugtarget interactions, pre-
diction of drugdrug interactions and drug repurposing
have all been tasks showing considerable success and
improvement over simpler non-graph ML methods.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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33. Veličković P, Cucurull G, Casanova A, et al. Graph attention
networks. In: 6th International Conference on Learning Rep-
resentations, ICLR 2018 – Conference Track Proceedings, 2018.
https://openreview.net/forum?id=rJXMpikCZ.

34. Gilmer J, Schoenholz SS, Riley PF, et al. Neural message
passing for quantum chemistry. In: Proceedings of Machine
Learning Research, 2017;1263–72. http://proceedings.mlr.pre
ss/v70/gilmer17a.html.

35. Pal A, Eksombatchai C, Zhou Y, et al. PinnerSage: multi-
modal user embedding framework for recommendations at
pinterest. In: Proceedings of the 26th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining (KDD ‘20). Virtual
Event, CA, USA. ACM, New York, NY, USA, 2020;10. https://
doi/10.1145/3394486.3403280.

36. Hongxia Yang. Aligraph: a comprehensive graph neural
network platform. In: In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD ‘19). New York, NY, USA: Association

for Computing Machinery, 2019;3165–66. https://doi.o
rg/10.1145/3292500.3340404.

37. Rossi E, Frasca F, Chamberlain B, et al. Sign: scalable incep-
tion graph neural networks. Graph Representation Learning
and Beyond (GRL+) Workshop at the 37th International Con-
ference on Machine Learning, ICML. 2020. https://arxiv.org/a
bs/2004.11198.

38. Rossi E, Chamberlain B, Frasca F, et al. Temporal graph net-
works for deep learning on dynamic graphs 2020. https://a
rxiv.org/abs/2006.10637.

39. Lange O, Perez L. Traffic prediction with advanced graph neural
networks, 2020. https://deepmind.com/blog/article/traffic-
prediction-with-advanced-graph-neural-networks.

40. Monti F, Frasca F, Eynard D, et al. Fake news detection on
social media using geometric deep learning. 2019. https://a
rxiv.org/abs/1902.06673.

41. Sanchez-Gonzalez A, Godwin J, Pfaff T, et al. Learn-
ing to simulate complex physics with graph networks.
International Conference on Machine Learning. Advances in
Neural Information Processing Systems (NeurIPS 2020),
2020;33:8459–68.

42. Shlomi J, Battaglia P, et al. Graph neural networks in parti-
cle physics. Mach Learn: Sci Technol 2020;2(2).https://iopscie
nce.iop.org/article/10.1088/2632-2153/abbf9a.

43. Nicholas Choma, Federico Monti, Lisa Gerhardt, et al. Graph
neural networks for icecube signal classification. 2018 17th
IEEE International Conference on Machine Learning and Appli-
cations (ICMLA). Institute of Electrical and Electronics Engi-
neers Inc, 2018, pp. 386–91. doi: 10.1109/ICMLA.2018.00064.

44. Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne
Van Den Berg, Ivan Titov, and Max Welling. Modeling
relational data with graph convolutional networks.
European Semantic Web Conference, 593–607. Springer,
2018.

45. Ivana Balazevic, Carl Allen, and Timothy Hospedales.
Tucker: Tensor factorization for knowledge graph comple-
tion. Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP). Hong
Kong, China: Association for Computational Linguistics,
5188–5197, 2019.

46. Feinberg EN, Joshi E, Pande VS, et al. Improvement in admet
prediction with multitask deep featurization. J Med Chem
2020;63(16):8835.

47. Pittala S, Koehler W, Deans J, et al. Relation-weighted
link prediction for disease gene identification. In: 4th
Knowledge Representation and Reasoning Meets Machine Learn-
ing Workshop (KR2ML), NeurIPS 2020. https://arxiv.org/a
bs/2011.05138.

48. Zhavoronkov A, Ivanenkov YA, Aliper A, et al. Deep learn-
ing enables rapid identification of potent ddr1 kinase
inhibitors. Nat Biotechnol 2019;37(9):1038–40.

49. Gainza P, Sverrisson F, Monti F, et al. Deciphering inter-
action fingerprints from protein molecular surfaces using
geometric deep learning. Nat Methods 2020;17(2):184–92.

50. Stokes JM, Yang K, Swanson K, et al. A deep learn-
ing approach to antibiotic discovery. Cell 2020;180(4):
688–702.

51. Nickel M, Murphy K, Tresp V, et al. A review of rela-
tional machine learning for knowledge graphs. Proc IEEE
2015;104(1):11–33.

52. Zhou J, Cui G, Zhang Z, et al. Graph neural networks: a
review of methods and applications. AI Open 2018;1:57.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/6/bbab159/6278145 by Shanghai Jiao Tong U

niversity user on 15 O
ctober 2022

https://papers.nips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://papers.nips.cc/paper/2015/hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html
https://arxiv.org/abs/2003.03123
https://arxiv.org/abs/2003.03123
https://doi.org/10.1145/3450439.3451855
https://openreview.net/forum?id=HkgEQnRqYQ
https://arxiv.org/abs/1908.01000
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://openreview.net/forum?id=rJXMpikCZ
http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://doi/10.1145/3394486.3403280
https://doi/10.1145/3394486.3403280
https://doi.org/10.1145/3292500.3340404
https://doi.org/10.1145/3292500.3340404
https://arxiv.org/abs/2004.11198
https://arxiv.org/abs/2004.11198
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/2006.10637
https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks
https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks
https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1902.06673
https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a
https://iopscience.iop.org/article/10.1088/2632-2153/abbf9a
https://doi.org/10.1109/ICMLA.2018.00064
https://arxiv.org/abs/2011.05138
https://arxiv.org/abs/2011.05138


GML in Drug Disc. & Dev. 17

53. Wu Z, Pan S, Chen F, et al. A comprehensive survey on
graph neural networks. IEEE Trans Neural Netw Learn Systems
2020;32(1):4.

54. Hamilton WL, Ying R, Leskovec J. Representation learning
on graphs: methods and applications. IEEE Data Engineering
Bulletin 2017.https://arxiv.org/abs/1709.05584.

55. Zhang Z, Cui P, Zhu W. Deep learning on graphs: a sur-
vey. IEEE Trans Knowl Data Eng 2020. https://arxiv.org/a
bs/1812.04202.

56. Talevi A, Morales JF, Hather G, et al. Machine learning in
drug discovery and development. Part 1: a primer. CPT
Pharmacometrics Syst Pharmacol 2020;9(3):129–42.

57. Vamathevan J, Clark D, Czodrowski P, et al. Applications of
machine learning in drug discovery and development. Nat
Rev Drug Discov 2019;18(6):463–77.

58. Rifaioglu AS, Atas H, Martin MJ, et al. Recent applications of
deep learning and machine intelligence on in silico drug
discovery: methods, tools and databases. Brief Bioinform
2019;20(5):1878–912.

59. Risi Imre Kondor and John Lafferty. Diffusion kernels on
graphs and other discrete structures. Proceedings of the 19th
International Conference on Machine Learning (ICML), 315–22,
2002. http://people.cs.uchicago.edu/~risi/papers/diffusion-
kernels.pdf.

60. Weisfeiler B, Lehman AA. A reduction of a graph to a canon-
ical form and an algebra arising during this reduction.
Nauchno-Technicheskaya Informatsia 1968;2(9).

61. Christoph Berkholz and Martin Grohe. Limitations of alge-
braic approaches to graph isomorphism testing. Interna-
tional Colloquium on Automata, Languages, and Programming,
155–166. Springer, 2015.

62. Chami I, Abu-El-Haija S, Perozzi B, et al. Machine learning
on graphs: a model and comprehensive taxonomy. 2020.
https://arxiv.org/abs/2005.03675.

63. Murphy KP. Machine Learning: A Probabilistic Perspective. MIT
Press, 2012.

64. Othmer HG, Scriven LE. Instability and dynamic
pattern in cellular networks. J Theor Biol 1971;32(3):
507–37.

65. Praktiknjo SD, Obermayer B, Zhu Q, et al. Tracing tumorige-
nesis in a solid tumor model at single-cell resolution. Nat
Commun 2020;11(1):1–12.

66. Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs:
simple building blocks of complex networks. Science
2002;298(5594):824–7.
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